85 research outputs found

    Global forecasting of thermal health hazards: the skill of probabilistic predictions of the Universal Thermal Climate Index (UTCI)

    Get PDF
    Although over a hundred thermal indices can be used for assessing thermal health hazards, many ignore the human heat budget, physiology and clothing. The Universal Thermal Climate Index (UTCI) addresses these shortcomings by using an advanced thermo-physiological model. This paper assesses the potential of using the UTCI for forecasting thermal health hazards. Traditionally, such hazard forecasting has had two further limitations: it has been narrowly focused on a particular region or nation and has relied on the use of single ‘deterministic’ forecasts. Here, the UTCI is computed on a global scale,which is essential for international health-hazard warnings and disaster preparedness, and it is provided as a probabilistic forecast. It is shown that probabilistic UTCI forecasts are superior in skill to deterministic forecasts and that despite global variations, the UTCI forecast is skilful for lead times up to 10 days. The paper also demonstrates the utility of probabilistic UTCI forecasts on the example of the 2010 heat wave in Russia

    the urban corridor of venice and the case of padua

    Get PDF
    Urban Heat Island effect was widely studied in large cities around the world, more rarely in medium size ones. The chapter reports on the study of the UHI phenomenon in Padua, a medium size city of the North-East of Italy, one of the most industrialized and developed parts of the country. Experimental measurements were carried out during 2012 summer, recording the main thermo-hygrometric variables (dry-bulb temperature, relative humidity, global solar radiation) by a mobile survey along an exact path crossing different zones of the city area: urban, sub-urban and rural. The analysis of the data highlights the presence of UHI effect with different magnitudes in function of the zone of the city. In the city centre, an historical zone, the effect was up to 7 °C. In the meantime, some measurements in situ were carried out in order to evaluate other thermal comfort indexes rather than air temperature and humidity only: wind velocity and mean radiant temperature (besides the other meteorological variables) in some characteristic sites of the city area like historic centre, high and low density populated residential zones, industrial zone, rural zone, were recorded. In particular, a very famous square of the city (Prato della Valle) was analysed: it can be considered representative of the phenomenon because of the size and the very different characteristics from the UHI effect point of view. RayMan simulation model was used to calculate some outdoor comfort indexes and Envimet model was further used to evaluate the effect of some mitigation strategies in characteristic sites of the city

    The physiological strain index does not reliably identify individuals at risk of reaching a thermal tolerance limit

    Get PDF
    Purpose The physiological strain index (PSI) was developed to assess individuals' heat strain, yet evidence supporting its use to identify individuals at potential risk of reaching a thermal tolerance limit (TTL) is limited. The aim of this study was to assess whether PSI can identify individuals at risk of reaching a TTL. Methods Fifteen females and 21 males undertook a total of 136 trials, each consisting of two 40-60 minute periods of treadmill walking separated by ~ 15 minutes rest, wearing permeable or impermeable clothing, in a range of climatic conditions. Heart rate (HR), skin temperature (T sk), rectal temperature (T re), temperature sensation (TS) and thermal comfort (TC) were measured throughout. Various forms of the PSI-index were assessed including the original PSI, PSI fixed , adaptive-PSI (aPSI) and a version comprised of a measure of heat storage (PSI HS). Final physiological and PSI values and their rate of change (ROC) over a trial and in the last 10 minutes of a trial were compared between trials completed (C, 101 trials) and those terminated prematurely (TTL, 35 trials). Results Final PSI original , PSI fixed , aPSI, PSI HS did not differ between TTL and C (p > 0.05). However, differences between TTL and C occurred in final T sk , T re-T sk , TS, TC and ROC in PSI fixed , T re , T sk and HR (p < 0.05). Conclusion These results suggest the PSI, in the various forms, does not reliably identify individuals at imminent risk of reaching their TTL and its validity as a physiological safety index is therefore questionable. However, a physiological-perceptual strain index may provide a more valid measure

    Energy for cities: Supply, demand and infrastructure investment

    Get PDF
    © 2017, Springer International Publishing AG. Energy is essential to all activities in all regions of a country. However the density of energy use in, and our economic dependence on, cities means that it is more critical for urban areas. Nevertheless we suggest that the provision of energy for urban areas cannot be considered separately from the national context. We will demonstrate how to assess the ability of a nation to invest in energy infrastructure for the benefit of cities. Our approach exploits data sets which are available in most industrialised countries, and we select two quite different case studies to illustrate our method: the Colombia (Bogota) and UK (London). Our focus for energy sustainability in cities is quality of life and reduced fossil-fuel emissions. We will show that the main target for cities should be to improve air quality and reduce energy demand by improving energy efficiency

    Heat-waves: impacts and responses

    No full text

    Rasche Schwankungen der Lufttemperatur im Stadtgebiet von Freiburg i. Br. als Element des Bioklimas des Menschen

    No full text
    SIGLECopy held by FIZ Karlsruhe; available from UB/TIB Hannover / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman
    corecore